Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Arch Toxicol ; 97(10): 2697-2705, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37592049

RESUMO

Human N-acetyltransferase 2 (NAT2) is subject to genetic polymorphism in human populations. In addition to the reference NAT2*4 allele, two genetic variant alleles (NAT2*5B and NAT2*7B) are common in Europe and Asia, respectively. NAT2*5B possesses a signature rs1801280 T341C (I114T) single-nucleotide polymorphism (SNP), whereas NAT2*7B possesses a signature rs1799931 G857A (G286E) SNP. NAT2 alleles possessing the T341C (I114T) or G857A (G286E) SNP were recombinant expressed in yeast and tested for capacity to catalyze the O-acetylation of the N-hydroxy metabolites of heterocyclic amines (HCAs). The T341C (I114T) SNP reduced the O-acetylation of N-hydroxy-2-amino-3-methylimidazo [4,5-f] quinoline (N-OH-IQ), N-hydroxy-2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (N-OH-MeIQx) and N-hydroxy- 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (N-OH-PhIP), whereas the G857A (G286E) SNP reduced the O-acetylation of N-OH-IQ and N-OH-MeIQx but not N-OH-PhIP. The G857A (G286E) SNP significantly (p < 0.05) reduced apparent Km toward N-OH-PhIP but did not significantly (p > 0.05) affect apparent Vmax. Cultures of DNA repair-deficient Chinese hamster ovary (CHO) cells transfected with human CYP1A2 and NAT2*4, NAT2*5B or NAT2*7B alleles were incubated with various concentrations of IQ, MeIQx or PhIP and double-stranded DNA damage and reactive oxygen species (ROS) were measured. Transfection with human CYP1A2 did not significantly (p > 0.05) increase HCA-induced DNA damage and ROS over un-transfected cells. Additional transfection with NAT2*4, NAT2*5B or NAT2*7B allele increased both DNA damage and ROS. The magnitude of the increases was both NAT2 allele- and substrate-dependent showing the same pattern as observed for the O-acetylation of the N-hydroxylated HCAs suggesting that both are mediated via NAT2-catalyzed O-acetylation. The results document the role of NAT2 and its genetic polymorphism on the O-acetylation and genotoxicity of HCAs.


Assuntos
Arilamina N-Acetiltransferase , Citocromo P-450 CYP1A2 , Animais , Cricetinae , Humanos , Células CHO , Espécies Reativas de Oxigênio , Cricetulus , Polimorfismo de Nucleotídeo Único , Dano ao DNA , Acetiltransferases , Aminas/toxicidade , Carcinógenos/toxicidade , Arilamina N-Acetiltransferase/genética
2.
Arch Toxicol ; 97(6): 1773-1781, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142755

RESUMO

4,4'-Methylenebis(2-chloroaniline) or MOCA is an aromatic amine used primarily in polyurethane and rubber industry. MOCA has been linked to hepatomas in animal studies while limited epidemiologic studies reported the association of exposure to MOCA and urinary bladder and breast cancer. We investigated MOCA-induced genotoxicity and oxidative stress in DNA repair-deficient Chinese hamster ovary (CHO) cells stably transfected with human metabolizing enzymes CYP1A2 and N-acetyltransferase 2 (NAT2) variants as well as in rapid, intermediate, and slow NAT2 acetylator cryopreserved human hepatocytes. N-acetylation of MOCA was highest in UV5/1A2/NAT2*4 followed by UV5/1A2/NAT2*7B and UV5/1A2/NAT2*5B CHO cells. Human hepatocytes showed a NAT2 genotype-dependent response with highest N-acetylation in rapid acetylators followed by intermediate and slow acetylators. MOCA induced higher levels of mutagenesis and DNA damage in UV5/1A2/NAT2*7B compared to UV5/1A2/NAT2*4 and UV5/1A2/NAT2*5B cells (p < 0.0001). MOCA also induced higher levels of oxidative stress in UV5/1A2/NAT2*7B cells. MOCA caused concentration-dependent increase in DNA damage in cryopreserved human hepatocytes (linear trend p < 0.001) which was NAT2 genotype dependent i.e., highest in rapid acetylators, lower in intermediate acetylators, and lowest in slow acetylators (p < 0.0001). Our findings show that N-acetylation and genotoxicity of MOCA is NAT2 genotype dependent and suggest that individuals possessing NAT2*7B are at higher risk to MOCA-induced mutagenicity. DNA damage, and oxidative stress. They confirm significant differences in genotoxicity between the NAT2*5B and NAT2*7B alleles, both of which are associated with slow acetylator phenotype.


Assuntos
Arilamina N-Acetiltransferase , Metilenobis (cloroanilina) , Cricetinae , Animais , Humanos , Cricetulus , Células CHO , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Dano ao DNA , Acetiltransferases/genética , Genótipo , Estresse Oxidativo , Polimorfismo Genético , Acetilação
3.
Arch Toxicol ; 97(1): 189-199, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36138126

RESUMO

The use of new psychoactive substances (NPS) as drugs of abuse is common and increasingly popular, particularly among youth and neglected communities. Recent studies have reported acute toxic effects from these chemicals; however, their long-term toxicity is unknown. Genetic differences between individuals likely affect the toxicity risk. Arylamine N-acetyltransferase 2 (NAT2) capacity differs among individuals due to genetic inheritance. The goal of the present study is to investigate the gene-environment interaction between NAT2 polymorphism and toxicity after exposure to these chemicals. We measured N-acetylation by human NAT1 and NAT2 and found that N-acetylation of NPS is carried out exclusively by NAT2. Differences in N-acetylation between NAT2*4 (reference allele) and NAT2*5B (common variant allele) were highly significant (p < 0.0001). Using DNA repair-deficient genetically engineered Chinese hamster ovary (CHO cells), expressing human CYP1A2 and either NAT2*4 or NAT2*5B, we measured the induction of DNA double-strand breaks ([Formula: see text]H2Ax) following treatment of the CHO cells with increasing concentrations of NPS. The induction of [Formula: see text]H2Ax showed a NAT2 allele-dependent response, higher in the NAT2*4 vs NAT2*5B alleles (p < 0.05). Induction of oxidative stress (ROS/RNS) was evaluated; we observed NAT2 allele-dependent response for all compounds in concentrations as low as 10 [Formula: see text]M, where NAT2*4 showed increased ROS/RNS vs NAT2*5B (p < 0.05). In summary, NPS are N-acetylated by NAT2 at rates higher in cells expressing NAT2*4 than NAT2*5B. Exposure to psychoactive chemicals results in genotoxic and oxidative damage that is modified by the NAT2 genetic polymorphism.


Assuntos
Arilamina N-Acetiltransferase , Carcinógenos , Cricetinae , Animais , Humanos , Adolescente , Cricetulus , Células CHO , Carcinógenos/toxicidade , Espécies Reativas de Oxigênio , Dano ao DNA , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Acetiltransferases/genética , Estresse Oxidativo , Polimorfismo Genético , Acetilação
4.
Toxicol Sci ; 190(2): 158-172, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36156098

RESUMO

Arylamine N-acetyltransferase 2 (NAT2) is well-known for its role in phase II metabolism of xenobiotics and drugs. More recently, genome wide association studies and murine models implicated NAT2 in regulation of insulin sensitivity and plasma lipid levels. However, the mechanism remains unknown. Transcript levels of human NAT2 varied dynamically in HepG2 (hepatocellular) cells, depending on the nutrient status of the culture media. Culturing the cells in the presence of glucose induced NAT2 mRNA expression as well as its N-acetyltransferase activity significantly. In addition, insulin or acetate treatment also significantly induced NAT2 mRNA. We examined and compared the glucose- and acetate-dependent changes in NAT2 expression to those of genes involved in glucose and lipid metabolism, including FABP1, CPT1A, ACACA, SCD, CD36, FASN, ACLY, G6PC, and PCK1. Genes that are involved in fatty acid transport and lipogenesis, such as FABP1 and CD36, shared a similar pattern of expression with NAT2. In silico analysis of genes co-expressed with NAT2 revealed an enrichment of biological processes involved in lipid and cholesterol biosynthesis and transport. Among these, A1CF (APOBEC1 complementation factor) showed the highest correlation with NAT2 in terms of its expression in normal human tissues. The current study shows, for the first time, that human NAT2 is transcriptionally regulated by glucose and insulin in liver cancer cell lines and that the gene expression pattern of NAT2 is similar to that of genes involved in lipid metabolism and transport.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias Hepáticas , Humanos , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Linhagem Celular , Estudo de Associação Genômica Ampla , Glucose/farmacologia , Insulina/farmacologia , Lipídeos , Neoplasias Hepáticas/genética , RNA Mensageiro
5.
Arch Toxicol ; 96(12): 3257-3263, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36112171

RESUMO

We used cryopreserved human hepatocytes that express rapid, intermediate, and slow acetylator N-acetyltransferase 2 (NAT2) genotypes to measure the N-acetylation of ß-naphthylamine (BNA) which is one of the aromatic amines found in cigarette smoke including E-cigarettes. We investigated the role of NAT2 genetic polymorphism in genotoxicity and oxidative stress induced by BNA. In vitro BNA NAT2 activities in rapid acetylators was 1.6 and 3.5-fold higher than intermediate (p < 0.01) and slow acetylators (p < 0.0001). BNA N-acetylation in situ was 3 to 4- fold higher in rapid acetylators than slow acetylators, following incubation with 10 and 100 µM BNA (p < 0.01). DNA damage was two to threefold higher in the rapid versus slow acetylators (p < 0.0001) and 2.5-fold higher in intermediate versus slow acetylators following BNA treatment at 100 and 1000 µM, ROS/RNS level was the highest in rapid acetylators followed by intermediate and then slow acetylators (p < 0.0001). Our findings show that the N-acetylation of BNA is NAT2 genotype dependent in cryopreserved human hepatocytes and our data further document an important role for NAT2 genetic polymorphism in modifying BNA-induced genotoxicity and oxidative damage.


Assuntos
Arilamina N-Acetiltransferase , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Carcinógenos/toxicidade , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , 2-Naftilamina , Acetilação , Espécies Reativas de Oxigênio , Genótipo , Hepatócitos/metabolismo , Acetiltransferases/genética , Aminas
6.
Arch Toxicol ; 96(11): 2999-3012, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36040704

RESUMO

ß-naphthylamine (BNA) is an important aromatic amine carcinogen. Current exposures derive primarily from cigarette smoking including e-cigarettes. Occupational and environmental exposure to BNA is associated with urinary bladder cancer which is the fourth most frequent cancer in the United States. N-acetyltransferase 2 (NAT2) is an important metabolizing enzyme for aromatic amines. Previous studies investigated mutagenicity and genotoxicity of BNA in bacteria and in rabbit or rat hepatocytes. However, the effects of human NAT2 genetic polymorphism on N-acetylation and genotoxicity induced by BNA still need to be clarified. We used nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells that were stably transfected with human CYP1A2 and NAT2 alleles: NAT2*4 (reference allele), NAT2*5B (variant slow acetylator allele common in Europe) or NAT2*7B (variant slow acetylator allele common in Asia). BNA N-acetylation was measured both in vitro and in situ via high-performance liquid chromatography (HPLC). Hypoxanthine phosphoribosyl transferase (HPRT) mutations, double-strand DNA breaks, and reactive oxygen species (ROS) were measured as indices of toxicity. NAT2*4 cells showed significantly higher BNA N-acetylation rates followed by NAT2*7B and NAT2*5B. BNA caused concentration-dependent increases in DNA damage and ROS levels. NAT2*7B showed significantly higher levels of HPRT mutants, DNA damage and ROS than NAT2*5B (p < 0.001, p < 0.0001, p < 0.0001 respectively) although both are slow alleles. Our findings suggest that BNA N-acetylation and toxicity are modified by NAT2 polymorphism. Furthermore, they confirm heterogeneity among slow acetylator alleles for BNA metabolism and toxicity supporting differential risk for individuals carrying NAT2*7B allele.


Assuntos
Arilamina N-Acetiltransferase , Sistemas Eletrônicos de Liberação de Nicotina , 2-Naftilamina , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Células CHO , Carcinógenos/toxicidade , Cricetinae , Cricetulus , Citocromo P-450 CYP1A2/metabolismo , Genótipo , Haplótipos , Humanos , Hipoxantina Fosforribosiltransferase/genética , Hipoxantinas , Coelhos , Ratos , Espécies Reativas de Oxigênio
7.
Toxicol Appl Pharmacol ; 449: 116095, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35662664

RESUMO

Humans are exposed to carcinogenic chemicals via occupational and environmental exposures. Common chemicals of concern that can occur in exposures together are aromatic amines (e.g., 4-aminobiphenyl [4-ABP] and ß-naphthylamine [BNA]) and hexavalent chromium (Cr[VI]). Arylamine N-acetyltransferases 1 and 2 (NAT1 and NAT2) are key to the metabolism of aromatic amines and their genotoxicity. The effects of Cr(VI) on the metabolism of aromatic amines remains unknown as well as how it may affect their ensuing toxicity. The objective of the research presented here is to investigate the effects of Cr(VI) on the metabolism and genotoxicity of 4-ABP and BNA in immortalized human lung epithelial cells (BEP2D) expressing NAT1 and NAT2. Exposure to Cr(VI) for 48 h increased NAT1 activity (linear regression analysis: P < 0.0001) as measured by N-acetylation of para-aminobenzoic acid (PABA) in BEP2D cells but not NAT2 N-acetylation of sulfamethazine, which are prototypic NAT1 and NAT2 substrates respectively. Cr(VI) also increased the N-acetylation of 4-ABP and BNA. In BEP2D cells the N-acetylation of 4-ABP (1-3 µM) exhibited a dose-dependent increase (linear regression analysis: P < 0.05) following co-incubation with 0-3 µM Cr(VI). In BEP2D cells, incubation with Cr(VI) caused dose-dependent increases (linear regression analysis: P < 0.01) in expression of CYP1A1 protein and catalytic activity. For genotoxicity, BEP2D cells were exposed to 4-ABP or BNA with/without Cr(VI) for 48 h. We observed dose-dependent increases (linear regression analysis: P < 0.01) in phospho-γH2AX protein expression for combined treatment of 4-ABP or BNA with Cr(VI). Further using a CYP1A1 inhibitor (α-naphthoflavone) and NAT1 siRNA, we found that CYP1A1 inhibition did not reduce the increased N-acetylation or genotoxicity of BNA by Cr(VI), while NAT1 inhibition did reduce increases in BNA N-acetylation and genotoxicity by Cr(VI). We conclude that during co-exposure of aromatic amines and Cr(VI) in human lung cells, Cr(VI) increased NAT1 activity contributing to increased 4-ABP and BNA genotoxicity.


Assuntos
Arilamina N-Acetiltransferase , Carcinógenos , 2-Naftilamina , Acetilação , Acetiltransferases/metabolismo , Aminas/toxicidade , Compostos de Aminobifenil , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Cromo , Citocromo P-450 CYP1A1/metabolismo , Células Epiteliais/metabolismo , Humanos , Isoenzimas/genética , Pulmão/metabolismo
8.
Toxicol Appl Pharmacol ; 442: 115993, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35353990

RESUMO

Lung cancer is the leading cause of cancer deaths in the United States with high incidence in tobacco smokers. Arylamine N-acetyltransferase 2 (NAT2) is a xenobiotic enzyme that catalyzes both N- and O-acetylation of carcinogens present in tobacco smoke and contributes towards the genotoxicity of these carcinogens. NAT2 allelic variants result in slow, intermediate, and rapid acetylation phenotypes. A recent meta-analysis reported NAT2 non-rapid (slow and intermediate) phenotypes had a significantly increased risk of lung cancer. NAT2 activity in humans is thought to be restricted to liver and gastrointestinal tract, and no studies to our knowledge have reported the expression of NAT2 activity in immortalized human lung epithelial cells. Given the importance of NAT2 in cancer and inhalation of various carcinogens directly into the lungs, we investigated NAT2 activity in human lung epithelial cells. Both NAT1 and NAT2 protein were detected by "in-cell" Western. Arylamine N-acetyltransferase activity was determined with selective substrates for NAT1 (p-aminobenzoic acid; PABA) and NAT2 (sulfamethazine; SMZ) in the presence and absence of a selective NAT1 inhibitor. PABA N-acetylation (NAT1 activity) in cell protein lysates was abolished in the presence of 25 µM of NAT1 inhibitor whereas SMZ N-acetylation (NAT2) was unaffected. Incubation with the NAT1 inhibitor partially reduced the N-acetylation of ß-naphthylamine and the O-acetylation of N-hydroxy-4-aminobiphenyl consistent with catalysis by both NAT1 and NAT2. Immortalized human lung epithelial cells exhibited dose-dependent N-acetylation of 4-ABP with an apparent KM of 24.4 ± 5.1 µM. These data establish that NAT2 is expressed and functional in immortalized human lung epithelial cells and will help us further our understanding of NAT2 in lung cancer.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias Pulmonares , Ácido 4-Aminobenzoico/metabolismo , Acetilação , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Carcinógenos/metabolismo , Células Epiteliais/metabolismo , Humanos , Isoenzimas/genética
9.
Front Pharmacol ; 13: 797469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153780

RESUMO

Arylamine N-acetyltransferase 1 (NAT1) is a drug metabolizing enzyme that influences cancer cell proliferation and survival, especially in breast cancer. Lysine-acetylation is an important Post-Translational Modification (PTM) in the regulation of diverse cellular processes. Histone deacetylases (HDACs) and Sirtuins (SIRT) may have an important role on the NAT1 acetylation status, affecting its catalytic capacity and having an impact on the downstream functions of this protein. The aim of the present work is to investigate the acetylation status of NAT1 in human breast cancer. Breast cancer cell lines MDA-MB-231 (ER-, PR-, HER2-) and ZR-75-1 (estrogen receptor+, PR+, HER2+) were cultured in the presence of HDAC inhibitors (SAHA, TSA) or Sirtuin inhibitors (AGK2, EX527, Sirtinol). Under these conditions, NAT1 protein and gene expression as well as enzymatic activity were quantified. Acetylation of NAT1 protein was evaluated following an immunoprecipitation protocol and acetyl-Lysine quantification. Sirt1 and Sirt2 knockdown were performed and NAT1 protein and NAT1 mRNA expression and catalytic activity were quantified. The treatment of MDA-MB-231 or ZR-75-1 cells with increasing HDAC inhibitors resulted in 2 to 15-fold upregulation in NAT1 message expression. Finally, the catalytic activity of NAT1 in the presence of HDAC inhibition increased 2-fold. Conversely, the inhibition of Sirtuin activity did not cause significant changes in NAT1 message but produced a significant decrease in NAT1 catalytic activity. NAT1 acetylation was higher in the cells treated with HDAC inhibitors, as well as Sirtuin inhibitors. Finally, silencing of Sirt1 and Sirt2 genes by siRNA transient knockdown of each or both genes resulted in reduction of NAT1 protein expression and catalytic activity. The use of HDAC and Sirtuin inhibitors has been demonstrated as a promising powerful therapeutic alternative in various cancers. These inhibitors can significantly attenuate tumor burden by limiting tumor growth and metastasis. These compounds can also induce DNA damage, cell cycle arrest, apoptosis, and autophagy to promote cancer cell death. Several studies have shown that NAT1 is upregulated in cancer cells. The results of the present study show that the acetylation status of NAT1 is an important factor that might have a relevant role in the progression of cancer.

10.
Mol Carcinog ; 61(5): 481-493, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35133049

RESUMO

Arylamine N-acetyltransferase 1 (NAT1) is frequently upregulated in breast cancer. Previous studies showed that inhibition or depletion of NAT1 in breast cancer cells diminishes anchorage-independent growth in culture, suggesting that NAT1 contributes to breast cancer growth and metastasis. To further investigate the contribution of NAT1 to growth and cell invasive/migratory behavior, we subjected parental and NAT1 knockout (KO) breast cancer cell lines (MDA-MB-231, MCF-7, and ZR-75-1) to multiple assays. The rate of cell growth in suspension was not consistently decreased in NAT1 KO cells across the cell lines tested. Similarly, cell migration and invasion assays failed to produce reproducible differences between the parental and NAT1 KO cells. To overcome the limitations of in vitro assays, we tested parental and NAT1 KO cells in vivo in a xenograft model by injecting cells into the flank of immunocompromised mice. NAT1 KO MDA-MB-231 cells produced primary tumors smaller than those formed by parental cells, which was contributed by an increased rate of apoptosis in KO cells. The frequency of lung metastasis, however, was not altered in NAT1 KO cells. When the primary tumors of the parental and NAT1 KO cells were allowed to grow to a pre-determined size or delivered directly via tail vein, the number and size of metastatic foci in the lung did not differ between the parental and NAT1 KO cells. In conclusion, NAT1 contributes to primary and secondary tumor growth in vivo in MDA-MB-231 breast cancer cells but does not appear to affect its metastatic potential.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias da Mama , Animais , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Isoenzimas/metabolismo , Camundongos
11.
Arch Toxicol ; 96(2): 511-524, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34783865

RESUMO

Arylamine N-acetyltransferase 1 (NAT1) plays a pivotal role in the metabolism of carcinogens and is a drug target for cancer prevention and/or treatment. A protein-ligand virtual screening of 2 million chemicals was ranked for predicted binding affinity towards the inhibition of human NAT1. Sixty of the five hundred top-ranked compounds were tested experimentally for inhibition of recombinant human NAT1 and N-acetyltransferase 2 (NAT2). The most promising compound 9,10-dihydro-9,10-dioxo-1,2-anthracenediyl diethyl ester (compound 10) was found to be a potent and selective NAT1 inhibitor with an in vitro IC50 of 0.75 µM. Two structural analogs of this compound were selective but less potent for inhibition of NAT1 whereas a third structural analog 1,2-dihydroxyanthraquinone (a compound 10 hydrolysis product also known as Alizarin) showed comparable potency and efficacy for human NAT1 inhibition. Compound 10 inhibited N-acetylation of the arylamine carcinogen 4-aminobiphenyl (ABP) both in vitro and in DNA repair-deficient Chinese hamster ovary (CHO) cells in situ stably expressing human NAT1 and CYP1A1. Compound 10 and Alizarin effectively inhibited NAT1 in cryopreserved human hepatocytes whereas inhibition of NAT2 was not observed. Compound 10 caused concentration-dependent reductions in DNA adduct formation and DNA double-strand breaks following metabolism of aromatic amine carcinogens beta-naphthylamine and/or ABP in CHO cells. Compound 10 inhibited proliferation and invasion in human breast cancer cells and showed selectivity towards tumorigenic versus non-tumorigenic cells. In conclusion, our study identifies potent, selective, and efficacious inhibitors of human NAT1. Alizarin's ability to inhibit NAT1 could reduce breast cancer metastasis particularly to bone.


Assuntos
Arilamina N-Acetiltransferase/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Isoenzimas/antagonistas & inibidores , Animais , Antraquinonas/farmacologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Células CHO , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Simulação por Computador , Cricetinae , Cricetulus , Adutos de DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Hepatócitos/enzimologia , Humanos , Concentração Inibidora 50
12.
Environ Mol Mutagen ; 61(2): 235-245, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31490564

RESUMO

Carcinogenic aromatic amines such as 4-aminobiphenyl (ABP) and 2-aminofluorene (AF) require metabolic activation to form electrophilic intermediates that mutate DNA leading to carcinogenesis. Bioactivation of these carcinogens includes N-hydroxylation catalyzed by CYP1A2 followed by O-acetylation catalyzed by arylamine N-acetyltransferase 2 (NAT2). To better understand the role of NAT2 genetic polymorphism in ABP- and AF-induced mutagenesis and DNA damage, nucleotide excision repair-deficient (UV5) Chinese hamster ovary (CHO) cells were stably transfected with human CYP1A2 and either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles. ABP and AF both caused significantly (P < 0.001) greater mutagenesis measured at the hypoxanthine phosphoribosyl transferase (hprt) locus in the UV5/CYP1A2/NAT2*4 acetylator cell line compared to the UV5, UV5/CYP1A2, and UV5/CYP1A2/NAT2*5B cell lines. ABP- and AF-induced hprt mutant cDNAs were sequenced and over 80% of the single-base substitutions were at G:C base pairs. DNA damage also was quantified by γH2AX in-cell western assays and by identification and quantification of the two predominant DNA adducts, N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) and N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) by liquid chromatography-mass spectrometry. DNA damage and adduct levels were dose-dependent, correlated highly with levels of hprt mutants, and were significantly (P < 0.0001) greater in the UV5/CYP1A2/NAT2*4 rapid acetylator cell line following treatment with ABP or AF as compared to all other cell lines. Our findings provide further clarity on the importance of O-acetylation in CHO mutagenesis assays for aromatic amines. They provide evidence that NAT2 genetic polymorphism modifies aromatic amine-induced DNA damage and mutagenesis that should be considered in human risk assessments following aromatic amine exposures. Environ. Mol. Mutagen. 61:235-245, 2020. © 2019 Wiley Periodicals, Inc.


Assuntos
Compostos de Aminobifenil/metabolismo , Arilamina N-Acetiltransferase/genética , Carcinógenos/metabolismo , Fluorenos/metabolismo , Polimorfismo Genético , Acetilação , Compostos de Aminobifenil/toxicidade , Animais , Arilamina N-Acetiltransferase/metabolismo , Células CHO , Carcinógenos/toxicidade , Cricetinae , Cricetulus , Dano ao DNA/efeitos dos fármacos , Fluorenos/toxicidade , Humanos , Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade
13.
J Oncol ; 2019: 3860426, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31531019

RESUMO

Elevated expression of N-acetyltransferase 1 (NAT1) is associated with invasive and lobular breast carcinomas as well as with bone metastasis following an epithelial-to-mesenchymal transition. We investigated the effect of NAT1 gene deletion in three different human breast cancer cell lines, MDA-MB-231, MCF-7, and ZR-75-1. Human NAT1 was knocked out using CRISPR/Cas9 technology and two different guide RNAs. None of the NAT1 knockout (KO) cell lines exhibited detectable NAT1 activity when measured using its selective substrate p-aminobenzoic acid (PABA). Endogenous acetyl coenzyme A levels (cofactor for acetylation pathways) in NAT1 KO cell lines were significantly elevated in the MDA-MB-231 (p < 0.001) and MCF-7 (p=0.0127) but not the ZR-75-1 (p > 0.05). Although the effects of NAT1 KO on cell-doubling time were inconsistent across the three breast cancer cell lines, the ability of the NAT1 KO cell lines to form anchorage-independent colonies in soft agar was dramatically and consistently reduced in each of the breast cancer cell lines. The NAT1 KO clones for MDA-MB-231, MCF-7, and ZR-75-1 had a reduction greater than 20-, 6-, and 7- folds in anchorage-independent cell growth, respectively, compared to their parental cell lines (p < 0.0001, p < 0.0001, and p < 0.05, respectively). The results indicate that NAT1 may be an important regulator of cellular acetyl coenzyme A levels and strongly suggest that elevated NAT1 expression in breast cancers contribute to their anchorage-independent growth properties and ultimately metastatic potential.

14.
Arch Toxicol ; 93(8): 2237-2246, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31292670

RESUMO

4, 4'-Methylenedianiline (MDA) is used extensively as a curing agent in the production of elastomers and is classified as reasonably anticipated to be a human carcinogen based on sufficient evidence in animal experiments. Human N-acetyltransferase 1 (NAT1) and 2 (NAT2) catalyze the N-acetylation of aromatic amines and NAT2 is subjected to a common genetic polymorphism in human populations separating individuals into rapid, intermediate, and slow acetylator phenotypes. Although MDA is known to undergo N-acetylation to mono- and di-acetyl metabolites, very little is known regarding whether this metabolism is subject to the NAT2 genetic polymorphism. We investigated the N-acetylation of MDA by recombinant human NAT1, NAT2, genetic variants of NAT2, and cryoplateable human hepatocytes obtained from rapid, intermediate and slow acetylators. MDA N-acetylation was catalyzed by both recombinant human NAT1 and NAT2 exhibiting a fivefold higher affinity for human NAT2. N-acetylation of MDA was acetylator genotype dependent as evidenced via its N-acetylation by recombinant human NAT2 genetic variants or by cryoplateable human hepatocytes. MDA N-acetylation to the mono-acetyl or di-acetyl-MDA was highest in rapid, lower in intermediate, and lowest in slow acetylator human hepatocytes. MDA-induced DNA damage in the human hepatocytes was dose-dependent and also acetylator genotype dependent with highest levels of DNA damage in rapid, lower in intermediate, and lowest in slow acetylator human hepatocytes under the same MDA exposure level. In summary, the N-acetylation of MDA by recombinant human NAT2 and cryopreserved human hepatocytes support an important role for the NAT2 genetic polymorphism in modifying MDA metabolism and genotoxicity and potentially carcinogenic risk.


Assuntos
Compostos de Anilina/toxicidade , Arilamina N-Acetiltransferase/genética , Polimorfismo Genético , Compostos de Anilina/farmacocinética , Arilamina N-Acetiltransferase/metabolismo , Criopreservação , Dano ao DNA , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Inativação Metabólica , Isoenzimas/genética , Isoenzimas/metabolismo , Testes de Mutagenicidade , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Biochem Pharmacol ; 156: 340-347, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30149019

RESUMO

N-acetyltransferase 2 (NAT2) catalyzes the biotransformation of numerous arylamine and hydrazine drugs and carcinogens. Genetic polymorphisms of NAT2 modify drug efficacy and toxicity and susceptibility to diseases such as cancer and type 2 diabetes. Expression of NAT2 has been documented in the liver and gastrointestinal tract but not in other tissues. Deacetylation of cytosolic proteins by sirtuins is a post-translational modification important in regulatory networks of diverse cellular processes. The aim of the present study was to investigate NAT2 expression in peripheral blood mononuclear cells (PBMC) and the effects of NAT2 genotype and Sirtuin 1 (SIRT1). Both NAT2 and SIRT1 proteins were expressed on PBMC. Their expression was more prevalent on CD3+ compared to CD19+ and CD56+ cell populations. N-acetylation capacity of PBMC exhibited a NAT2 gene-dose response toward the N-acetylation of isoniazid. Subjects with rapid NAT2 genotype showed an apparent Vmax of 42.1 ±â€¯2.4; intermediate NAT2 genotypes an apparent Vmax of 22.6 ±â€¯2.2; and slow acetylator NAT2 genotypes an apparent Vmax of 19.9 ±â€¯1.7 nM acetyl-isoniazid/24 h/million cells. The N-acetylation capacity of NAT2 in the presence of SIRT1 enhancer was significantly decreased (p < 0.001), conversely, the transient silencing of SIRT1 resulted in an increase of N-acetylation capacity (p < 0.001). These findings are the first report of NAT2 genotype-dependent expression on PBMC and post-translational modification by SIRT1. These findings constitute a substantial advance in our understanding of human N-acetyltransferase expression and a new much less invasive method for measurement of human NAT2 expression and phenotype.


Assuntos
Arilamina N-Acetiltransferase/metabolismo , Genótipo , Isoniazida/metabolismo , Leucócitos Mononucleares/metabolismo , Sirtuína 1/metabolismo , Adulto , Arilamina N-Acetiltransferase/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Isoniazida/farmacologia , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sirtuína 1/genética , Adulto Jovem
16.
Arch Toxicol ; 92(2): 661-668, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29043425

RESUMO

Human arylamine N-acetyltransferase 1 (NAT1) is responsible for the activation and elimination of xenobiotic compounds and carcinogens. Genetic polymorphisms in NAT1 modify both drug efficacy and toxicity. Previous studies have suggested a role for NAT1 in the development of several diseases. The aim of the present study was to evaluate NAT1 protein expression and in situ N-acetylation capacity in peripheral blood mononuclear cells (PBMC), as well as their possible associations with the expression of NAT1 transcript and NAT1 genotype. We report NAT1 protein, mRNA levels, and N-acetylation in situ activity for PBMC obtained from healthy donors. NAT1-specific protein expression was higher in CD3+ cells than other major immune cell subtypes (CD19 or CD56 cells). N-acetylation of pABA varied markedly among the PBMC of participants, but correlated very significantly with levels of NAT1 transcripts. NAT1*4 subjects showed significantly (p = 0.017) higher apparent pABA V max of 71.3 ± 3.7 versus the NAT1*14B subjects apparent V max of 58.5 ± 2.5 nmoles Ac-pABA/24 h/million cells. Levels of pABA N-acetylation activity at each concentration of substrate evaluated also significantly correlated with NAT1 mRNA levels for all samples (p < 0.0001). This highly significant correlation was maintained for samples with the NAT1*4 (p = 0.002) and NAT1*14B haplotypes (p = 0.0106). These results provide the first documentation that NAT1-catalyzed N-acetylation in PBMC is higher in T cell than in other immune cell subtypes and that individual variation in N-acetylation capacity is dependent upon NAT1 mRNA and NAT1 haplotype.


Assuntos
Ácido 4-Aminobenzoico/metabolismo , Arilamina N-Acetiltransferase/metabolismo , Isoenzimas/metabolismo , Leucócitos Mononucleares/metabolismo , Acetilação , Adulto , Arilamina N-Acetiltransferase/genética , Feminino , Genótipo , Haplótipos , Humanos , Isoenzimas/genética , Masculino , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , Linfócitos T/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA